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ACM: Assoeiation for Computing Machinery

(a) (b)
Geometric alighnment of 2D A spherical panorama constructed from 54 photographs
images for stitching (Szeliski and Shum 1997) © 1997 ACM

(Szeliski and Shum 1997) ©
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A multi-image panorama automatically assembled from an unordered photo collection
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8.1 Pairwise Alignment

* Feature-based alignment is the problem of estimating the motion between two or
more sets of matched 2D or 3D points.

* In this section, we restrict ourselves to global parametric transformations, such as
higher order transformation for curved surfaces

Gy B 2272 % DC&CV LAB
‘.I"&”? National Taiwan Univcrsily C S I E N T U 2 0 2 1 5



8.1 Pairwise Alignment

Transform Matrix Parameters p Jacobian J
10 ¢ 1 0
translation 0 1 t (tz, ty) 0 1
co —Sp tg (1 0 —Spxr — CY
Euclidean sg  Cp by (tz.t,.0) 1 cox — 59y
l4+a —b t, 1 0 2 —y
similarity b l+a t, (tz,ty.a.b) 0 1 vy =
1 + apo api [ _1 r y 0 0
affine 10 I +apn t (tz.ty, ago, ao1, @10, a11) 0O 1 0 0 = vy
1'+'h00 h01 hog
]210 1 + ]?-11 ]212
projective hao hoy 1 (hoo- ho1, - - -, ho1) (see Section 8.1.3)
Table 8.1 Jacobians ofthe 2D coordinate transformations x’ = f(x; p) shown in Table 2.1,

where we have re-parameterized the motions so that they are identity for p = 0.
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8.1 Pairwise Alignment

8.1.1 2D alignment using least squares

*  Given a set of matched feature points{(X;, X} ) } and a planar parametric
transformation of the form:

x' = f(x:p).

* The usual way to estimate motion parameters p is to use least squares, i.e., to
minimize the sum of squared residuals

Eus =) |lvil* = > IIf(xi:p) — x|,

* where

(8.1)

(8.2)

(8.3)

DC&CV LAB
CSIE NTU 2021



8.1 Pairwise Alignment
8.1.1 2D alignment using least squares

Many of the motion models presented, i.e., translation, similarity, and affine, have a

linear relationship between the amount of motion AX = x' — x and the unknown

parameters p.

Ax =x' —x = J(x)p.

where J = Of /Op is the Jacobian of the transformation f with respect to the
motion parameters p. In this case, a simple linear regression (linear least squares

problem) can be formulated as:

Eris = ) [J(xi)p — Ax;

—p! ZJT(X J(x

=p' Ap -

op’'b + c.

{Z IT (x;) Ax;

+Z | Ax;]|*

(8 7) LAB

(8.4)

(8.5)

(8.6)
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8.1 Pairwise Alignment

8.1.1 2D alignment using least squares

* The minimum can be found by solving the Symmetric Positive Definite (SPD)
system of normal equations

Ap = b. (8.8)

where

A= Z I (%) 3 (%) (8.9)

is called the Hessianand b = » . J T (x;)Ax;.
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8.1 Pairwise Alignment
8.1.1 2D alignment using least squares

Uncertainty weighting

* The above least squares formulation assumes that all feature points are matched with
the same accuracy.

This is often not the case, since certain points may fall i%lto more textured regions
than others. If we associate a scalar variance estimate 0; with each correspondence,
we can minimize the weighted least squares problem instead.

Ewis = Z LT;QHI‘?'_HQ. (8.10)
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8.1 Pairwise Alignment

8.1.1 2D alignment using least squares
Uncertainty weighting

C 1L . . - . —1 —2 .
Weighting each squared residual by its inverse covariance 2i; = = 0,, “A; (which
is called the information matrix), we obtain

EC’W’LS — Z ”I'?'_Hé__l — Z I‘?Ei—l]ﬁ“i — Z {T;ZI‘?AE'I}'.
i 1 i i

(8.11)
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8.1 Pairwise Alignment

8.1.2 Application: Panography

* In a panograph, images are translated and optionally rotated and scaled before being
blended with simple averaging

Figure 8.3 A simple panograph consisting of three images automatically aligned with a 5CRCV LAB

translational model and then averaged together:. CSIE NTU 20271 12



8.1 Pairwise Alignment
8.1.2 Application: Panography

* Consider a simple translational model. We want all the corresponding features in different
images to line up as best as possible.

 Letbe t; the location of the jth image coordinate frame in the global composite frame and
X;; be the location of the ith matched feature in the jth image.

* In order to align the images, we wish to minimize the least squares error

Eprg = Z H -+ X5) XiHQ‘ (8.12)
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8.1 Pairwise Alignment

8.1.3 Iterative algorithms

*  While linear least squares is the simplest method for estimating parameters, most problems in
computer vision do not have a simple linear relationship between the measurements and the
unknowns.

 In this case, the resulting problem is called non-linear least squares or non-linear regression.
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8.1 Pairwise Alignment

8.1.3 Iterative algorithms

* Consider, for example, the problem of estimating a rigid Euclidean 2D transformation
(translation plus rotation) between two sets of points.

» If we parameterize this transformation by the translation amount and the rotation angle , as
in Table 2.1, the Jacobian of this transformation depends on the current value of 6.

* By re-parameterized the motion matrices so that they are always the identity at the origin p =
0, which makes it easier to initialize the motion parameters
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8.1 Pairwise Alignment
8.1.3 Iterative algorithms

» To minimize the non-linear least squares problem, we iteratively find an update AP to the

current parameter estimate p by minimizing

Exis(Ap) = ZHf (xi:p + Ap) — x|

~ Z 1T (xi: p)Ap — 12

Z 3T

— ApTAAp — 2Ap b + ¢,

Ap — 2ApT ZJTI} +Z||ri|\2

where the “Hessian™ A is the same as Equation (8.9) and the right hand side vector

b= Z I (x;)r;

(8.13)

(8.14)

(8.15)

(8.16)

(8.17)
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8.1 Pairwise Alignment

8.1.3 Iterative algorithms

*  Once A and b have been computed, we solve for Ap using

(A + \diag(A))Ap = b, (8.18)

* For the other 2D motion models, the derivatives in Table 8.1 are all fairly straightforward,
except for the projective 2D motion (homography), which arises in image-stitching
applications.
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8.1 Pairwise Alignment

8.1.3 Iterative algorithms

* These equations can be re-written from (2.21) in their new parametric form as

1+ hoo)x +/ h hiox L+ hyp) /
.I‘Flr — ( T ?00) LT ‘01Y —I_ *02 and y; — ‘10 T ( T ]ll)y L "2 . (8 19)
hoox 4+ ha1y + 1 hoox + ha1y + 1

The Jacobian is therefore

J:?_f:l r y 1 0 0 0 —a'zx —‘r’y. (8.20)
op DI|0 0 0 = y 1 —y'z —yy

where DD = hoox + hoyy + 1 is the denominator in (8.19), which depends on the current
parameter settings (as do x" and 3/).
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8.1 Pairwise Alignment

8.1.3 Iterative algorithms

* An initial guess for the eight unknowns {] 200, N01

5 = = =

. ]E 21 } can be obtained by

multiplying both sides of the equations in (8.19) through by the denominator, which yields

the linear set of equations

-zl jr oy 1
g —y|l |0 0 0

0O 0 0
x oy 1

-/
—d

L

—y'x

_f"u
—y'y

]EDG

]221

(8.21)

* One way to compensate for this is to reweight each equation by the inverse of the current

estimate of the denominator, D,

Lz’ —z| 1 |z y
D\|y—-y| D0 0
@ = ) ™3
National Taiwan Un y

1
0

0O 0 O

—X T

— iz

—a'y
-

—YYy

ﬂ } oo

1121

(8.22)
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8.1 Pairwise Alignment
8.1.3 Iterative algorithms
* The most principled way to do the estimation, however, is to directly minimize the squared

residual equations (8.13) using the Gauss—Newton approximation, i.e., performing a first order
Taylor series expansion in p, as shown in (8.14), which yields the set of equations

&}200
v — Lz vy 1 0 0 0 —2'z —i'y . (8.23)
y =1 D10 0 0 = vy 1 —¢'z» —yy ' ' o
&}221
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RANSAC: RANdom Sample Consensus
8.1 Pairwise Alignment

8.1.4 Robust least squares and RANSAC

 Itis preferable to use an M-estimator when there are outliers among the correspondences .
* It involves applying a robust penalty function p(r) to the residuals instead of squaring them

Erirs(Ap) Zp |rs]) (8.25)

*  We can take the derivative of this function with respect to p and set it to 0,

3 i ) i 3 i ) .
Zv (Iril)—— ”r | =Y a{ly ”)r’,f” ;}; — 0, (8.26)

= |l

where ¥(r) = p'(r) is the derivative of p and is called the influence function.
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RANSAC: RANdom Sample Consensus
8.1 Pairwise Alignment

8.1.4 Robust least squares and RANSAC

 If we introduce a weight function, w(r) = ¥(r)/r. , we observe that finding the stationary
point of (8.25) using (8.26) is equivalent to minimizing the Iteratively Reweighted Least

Squares (IRLS) problem
Eres = Y w(||r:|]) [z, (8.27)
i
where the w(||r;||) play the same local weighting role as o; % in (8.10)
/':\‘_; 3 % :‘-’” X X DC&CV LAB
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8.1 Pairwise Alignment
8.1.4 Robust least squares and RANSAC

* The IRLS algorithm alternates between computing the influence functions w(||ri||): and
solving the resulting weighted least squares problem (with fixed w values)

*  While M-estimators can definitely help reduce the influence of outliers, in some cases,
starting with too many outliers will prevent IRLS (or other gradient descent algorithms) from
converging to the global optimum.

* A better approach is often to find a starting set of inlier correspondences, i.e., points that are
consistent with a dominant motion estimate
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8.1 Pairwise Alignment
8.1.4 Robust least squares and RANSAC

* Two widely used approaches to this problem are called RANdom SAmple Consensus, or

RANSAC for short (Fischler and Bolles 1981), and Least Median of Squares (LMS)
(Rousseeuw 1984).

* Both techniques start by selecting (at random) a subset of k correspondences, which is then

used to compute an initial estimate for p. The residuals of the full set of correspondences are
then computed as

r; = X; (X p) — X, (8.28)

where X are the estimated (mapped) locations and X are the sensed (detected) feature point

locations.
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 Least median of squares finds the median value of the ||r;

8.1 Pairwise Alignment
8.1.4 Robust least squares and RANSAC

* The RANSAC techniaue then counts the number of inliers that are within of their predicted

location, i.e., whose ||r;|| < € (The epsilon value is application dependent but is often
around 1-3 pixels.)

|? values.

* The random selection process is repeated S times and the sample set with the largest number

of inliers (or with the smallest median residual) is kept as the final solution.
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8.1 Pairwise Alignment
8.1.4 Robust least squares and RANSAC

*  When the number of measurements is quite large, it may be preferable to only score a subset
of the measurements in an initial round that selects the most plausible hypotheses for
additional scoring and selection.

* This modification of RANSAC, which can significantly speed up its performance, is called
Preemptive RANSAC (Nist er 2003).

* In another variant on RANSAC called PROSAC (PROgressive SAmple Consensus), random

samples are initially added from the most “confident” matches, thereby speeding up the process

of finding a (statistically) likely good set of inliers (Chum and Matas 2005).
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8.1 Pairwise Alignment
8.1.5 3D Alignment

* Instead of aligning 2D sets of image features, many computer vision applications require the
alignment of 3D points.

* In the case where the 3D transformations are linear in the motion parameters, e.g., for
translation, similarity, and affine, regular least squares (8.5) can be used

The case of rigid (Euclidean) motion,
ERSD — Z HX’; — RX.I'. — t”z (831)
i

which arises more frequently and is often called the absolute orientation problem (Horn

1987), requires slightly different techniques.
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8.1 Pairwise Alignment
8.1.5 3D Alignment

* If only scalar weightings are being used (as opposed to full 3D per-point anisotropic
covariance estimates), the weighted centroids of the two point clouds ¢ and ¢0 can be used to
estimate the translation t — ¢/ — Re.

*  We are then left with the problem of estimating the rotation between two sets of points
(%; = x; —c} and {x/ = x/ — ¢’} that are both centered at the origin

*  One commonly used technique is called the orthogonal Procrustes algorithm (Golub and Van
Loan 1996, p. 601) and involves computing the singular value decomposition (SVD) of the 3 x

3 correlation matrix

C=> xx"=UnVv". (8.32)

The rotation matrix is then obtained as R = UV7Z.
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8.2 Image Stitching

* Image stitching algorithms create the high-resolution photo-mosaics used to produce today’s
digital maps and satellite photos. They are also now a standard mode in smartphone cameras
and can be used to create beautiful ultra wide-angle panoramas.

* Image stitching originated in the photogrammetry community, where more manually
intensive methods based on surveyed ground control points or manually registered tie points
have long been used to register aerial photos into large-scale photo-mosaics (Slama 1980).

*  While early techniques worked by directly minimizing pixel-to-pixel dissimilarities, today’s
algorithms extract a sparse set of features and match them to each other, as described in

Chapter 7.
" AR DC&CV LAB
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8.2 Image Stitching

*  What, then, are the essential problems in image stitching?

* As with image alignment, we must first determine the appropriate mathematical model
relating pixel coordinates in one image to pixel coordinates in another

Gy B 2272 % DC&CV LAB
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8.2 Image Stitching

8.2.1 Parametric motion models

R
\j.r\i 4

,_‘.’.&_ =8/

Before we can register and align images, we need to establish the mathematical relationships
that map pixel coordinates from one image to another.

A variety of such parametric motion models are possible, from simple 2D transforms, to
planar perspective models, 3D camera rotations, lens distortions, and mapping to non-planar
(e.g., cylindrical) surfaces
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8.2 Image Stitching

8.2.1 Parametric motion models

(a) translation [2 dof]  (b) affine [6 dof]  (c) perspective [8 dof] (d) 3D rotation [3+ dof]

Figure 8.4 Two-dimensional motion models and how they can be used for image stitching.
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8.2 Image Stitching

8.2.1 Parametric motion models

*  More recent stitching algorithms first extract features and then match them up, often using
robust techniques such as RANSAC (Section 8.1.4) to compute a good set of inliers.

* The final computation of the homography i.e., the solution of the least squares fitting problem
given pairs of corresponding features

1+ hoo)x hot1 h
;1‘12( + hoo)zo + ho1yo + hoo and (8.35)

hooxo + ho1yo + 1

o hioxo + (1 + hi1)yo + h1o (8.36)
o hoowo + ha1yo +1 -

uses iterative least squares, as described in Section 8.1.3 and Equations (8.21-8.23).
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8.2 Image Stitching
8.2.2 Application: Whiteboard and document scanning

* The simplest image-stitching application is to stitch together a number of image scans taken
on a flatbed scanner.

* Say you have a large map, or a piece of child’s artwork, that is too large to fit on your scanner.

* Simply take multiple scans of the document, making sure to overlap the scans by a large
enough amount to ensure that there are enough common features.

* Next, take successive pairs of images that you know overlap, extract features, match them up,
and estimate the 2D rigid transform
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8.2 Image Stitching
8.2.2 Application: Whiteboard and document scanning

* Two-point RANSAC, if necessary, to find a good set of inliers.

* Then, on a final compositing surface (aligned with the first scan, for example), resample your
images (Section 3.6.1) and average them together.

* Can you see any potential problems with this scheme?
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8.2 Image Stitching
8.2.2 Application: Whiteboard and document scanning

*  One complication is that a 2D rigid transformation is non-linear in the rotation angle 6 so
you will have to either use non-linear least squares or constrain R to be orthonormal, as

described in Section 8.1.3.

* A bigger problem lies in the pairwise alignment process. As you align more and more pairs,
the solution may drift so that it is no longer globally consistent.

 In this case, a global optimization procedure, as described in Section 8.3, may be required.
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8.2 Image Stitching
8.2.3 Rotational panoramas

* The most typical case for panoramic image stitching is when the camera undergoes a pure
rotation.

* Think of standing at the rim of the Grand Canyon. Relative to the distant geometry in the
scene, as you snap away, the camera is undergoing a pure rotation, which is equivalent to
assuming that all points are very far from the camera, i.e., on the plane at infinity
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8.2 Image Stitching

8.2.3 Rotational panoramas

Il
(0,0.0.1)p=0

Xo = (X0.Y0./0) X1 = (Xpyf1)
R,

Figure 8.5  Pure 3D camera rotation. The form of the homography (mapping) is particu-
larly simple and depends only on the 3D rotation matrix and focal lengths.
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8.2 Image Stitching

8.2.3 Rotational panoramas

* Setting 7, = ¢, = 0, we get the simplified 3X3 homography

ﬁl[] — KlRlR{TlKD_l = KlngKﬂ_lf (8.38)

where K = diag(fg, fr. 1) is the simplified camera intrinsic matrix (2.59), assuming that
Cpx = Cy = 0, 1.e., we are indexing the pixels starting from the image center (Szeliski 1996).
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8.2 Image Stitching

8.2.3 Rotational panoramas

* Setting 7, = #, = 0, we get the simplified 3X3 homography

This can also be re-written as

. M p—1
I fl fU I
1
yi | ~ f1 Rio fo Yo (8.39)
1 1 1 1
or
I Io
y1| ~Rio |yo| . (8.40)
1 Jo_
W EEDE LA DC&CV LAB
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8.2 Image Stitching
8.2.3 Rotational panoramas

* Given this representation, how do we update the rotation matrices to best align two
overlapping images?

* Given a current estimate for the homography H1o in (8.38), the best way to update R is
to prepend an incremental rotation matrix R () to the current estimate R (Szeliski and

Shum 1997; Shum and Szeliski 2000),

H(w) = KiR(w)R10K7! = [KiR(w)KT[KiR10K7 '] = DHyp. (8.41)
- 1 —W; fl'i"-;y -

D=KRwWK!'~K I+ [w.H)K'=]| w. 1 —fiws|. (842
—wy /1 we/f1 I
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8.2 Image Stitching

8.2.3 Rotational panoramas

* Notice how there is now a nice one-to-one correspondence between the entries in the D
matrix and the /g0, - - -, 121 parameters used in Table 8.1 and Equation (8.19), i.e.,

(hoo, ko1, hoz2, hoo, P11, b2, hoo, ho1) = (0, —ws, fiwy, ws, 0, = fiwe, —wy / f1,wa/ f1)-

(8.43)
We can therefore apply the chain rule to Equations (8.24 and 8.43) to obtain
P —x| | —wy/f A+ fo—y| | (8.44)
y'—y —(fi+y*/fi)  zy/fi v
T 5 g DC&CV LAB
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8.2 Image Stitching
8.2.4 Gap Closing

e The techniques presented in this section can be used to estimate a series of rotation matrices
and focal lengths, which can be chained together to create large panoramas.

* Unfortunately, because of accumulated errors, this approach will rarely produce a closed 360
panorama. Instead, there will invariably be either a gap or an overlap

*  We can solve this problem by matching the first image in the sequence with the last one.

* The difference between the two rotation matrix estimates associated with the repeated first
indicates the amount of misregistration
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8.2 Image Stitching
8.2.4 Gap Closing

(b)

Figure 8.6  Gap closing (Szeliski and Shum 1997) © 1997 ACM: (a) A gap is visible when
the focal length is wrong (f = 510). (b) No gap is visible for the correct focal length (f =

DC&CV LAB
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IEEE: Institute of Electrical and-Electronics Engineers

8.2 Image Stitching
8.2.5 Application: Video summarization and compression

O T B «--;:

s AMECE

.. ¥

S "‘-«""" J#*' --‘:'-;g-
u.;.-ﬁ’ma‘.“.‘-.f"‘?;..‘w-..i ek, KD if‘-:

Figure 8.7  Video stitching the background scene to create a single sprite image that can

be transmitted and used to re-create the background in each frame (Lee, Chen et al. 1997) ©
1997 IEEE.
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8.2 Image Stitching
8.2.6 Cylindrical and spherical coordinates

* An alternative to using homographies or 3D motions to align images is to first warp the
images into cylindrical coordinates and then use a pure translational model to align them

(Chen 1995; Szeliski 1996).

* Unfortunately, this only works if the images are all taken with a level camera or with a known
tilt angle.

* Assume for now that the camera is in its canonical position, i.e., its rotation matrix is the
identity, R = I, so that the optical axis is aligned with the z axis and the y axis is aligned
vertically. The 3D ray corresponding to an (x; y) pixel is therefore (x; y; /).
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8.2 Image Stitching
8.2.6 Cylindrical and spherical coordinates

We wish to project this image onto a cylindrical surface of unit radius (Szeliski 1996).

Points on this surface are parameterized by an angle ¢ and a height /., with the 3D cylindrical

coordinates corresponding to (6, h) given by
(sinf, h,costl) o< (x,y, f), (8.45)

as shown in Figure 8.8a. From this correspondence, we can compute the formula for the warped or

mapped coordinates (Szeliski and Shum 1997),

i%e'j”t"f‘ DC&CV LAB
tonal Taiwan Universi CSIE NTU 2021

47



8.2 Image Stitching
8.2.6 Cylindrical and spherical coordinates
v = s = stan ! i? (8.46)

Y

where s is an arbitrary scaling factor (sometimes called the radius of the cylinder) that can be

y =sh=s (8.47)

set to s = f to minimize the distortion (scaling) near the center of the image.'® The inverse

of this mapping equation is given by

,lf

r= ftanf = ftan —, (8.48)
S
yf _y.l" _,r.l"
y=h\/12+ f2 = —f\/l +tan? 2’ /s = L sec —. (8.49)
S S S
i%e'j"t%‘ DC&CV LAB
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8.2 Image Stitching
8.2.6 Cylindrical and spherical coordinates

p=XYZ2)

h x =) (s1né,h.cosb)

(a)
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8.2 Image Stitching
8.2.6 Cylindrical and spherical coordinates

 Images can also be projected onto a spherical surface (Szeliski and Shum 1997), which is
useful if the final panorama includes a full sphere or hemisphere of views, instead of just a
cylindrical strip.

* In this case, the sphere is parameterized by two angles (., @) spherical coordinates given by

(sin 6 cos ¢, sin ¢, cos @ cos @) o< (x,y, [). (8.50)
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8.2 Image Stitching
8.2.6 Cylindrical and spherical coordinates

(b)
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8.2 Image Stitching
8.2.6 Cylindrical and spherical coordinates

as shown in Figure 8.8b.!” The correspondence between coordinates is now given by (Szeliski
and Shum 1997):

T
' = s = stan~ 1 =, (8.51)
f
y = s¢ = stan~! .y : (8.52)
Vv 12+ f?
while the inverse 1s given by
rr;
r = ftanf = ftan —, (8.53)
s
U_f ljf er
y =22+ f2tan¢ = tan ‘—f\/l + tan® 2’ /s = f tan = sec —. (8.54)
S s s
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8.2 Image Stitching
8.2.6 Cylindrical and spherical coordinates

(b)

Figure 8.9 A cylindrical panorama (Szeliski and Shum 1997) © 1997 ACM: (a) two cylin-
drically warped images related by a horizontal translation, (b) part of a cylindrical panorama
composited from a sequence of images.
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8.3 Global Alignment

* In this section, we extend the pairwise matching criteria (8.2, 9.1, and 9.43) to a global energy
function that involves all of the per-image pose parameters (Section 8.3.1).

*  Once we have computed the global alignment, we often need to perform local adjustments,
such as parallax removal, to reduce double images and blurring due to local mis-registrations

(Section 8.3.2).

* Finally, if we are given an unordered set of images to register, we need to discover which
images go together to form one or more panoramas.

 This process of panorama recognition is described in Section 8.3.3.
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8.3 Global Alignment
8.3.1 Bundle adjustment

Consider the feature-based alignment problem given in Equation (8.2), 1.e.,

Epairwise-ts = D 1] = [[%] (xi: p) — %2 (8.58)
1

For multi-image alignment, instead of having a single collection of pairwise feature corre-
spondences, {(x?-_,_ x") }, we have a collection of n features, with the location of the zth feature
point in the jth image denoted by x;; and its scalar confidence (i.e., inverse variance) denoted
by ¢;;.?" Each image also has some associated pose parameters.
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8.3 Global Alignment
8.3.1 Bundle adjustment

* In this section, we assume that the pose consists of a rotation matrix R; and a focal length
f; although formulations in terms of homographies are also possible

* The equation mapping a 3D point X; into a point x;; in frame j can be re-written from

Equations (2.68) and (8.38) as
iij ~ KjRin and Xi R;lK;lf{U (859)

where K; = diag(f;, f;,1) is the simplified form of the calibration matrix. The motion
mapping a point X;; from frame j into a point X;;, in frame £ is similarly given by

Xir ~ HpjXi; = KpRp R K% (8.60)
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8.3 Global Alignment
8.3.1 Bundle adjustment

* An alternative way to formulate the optimization is to use true bundle adjustment, i.e., to
solve not only for the pose parameters{(R' ;s f ; )} but also for the 3D point positions {X?-}

Epa_op = Z Z ciillxii(xi: Ry, fi) — %457, (8.62)

* An alternative formulation is to minimize the error in 3D projected ray directions (Shum

and Szeliski 2000), i.e.,

Epa-3p = Z Z cijl|%i (X Ry fy) — xi|°, (8.63)

where x;(x;;; R, f;) is given by the second half of (8.59).
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8.3 Global Alignment
8.3.1 Bundle adjustment

* However, if we eliminate the 3D rays xi, we can derive a pairwise energy formulated in 3D ray

space (Shum and Szeliski 2000)

Ea.ll—pa.irs—BD — Z Z CiiCil ||5{3(:§{?j Rj,-. fj) _ ia (i?k Rk: fﬁf) ”i2 (864)
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8.3 Global Alignment
8.3.2 Parallax Removal

* Once we have optimized the global orientations and focal lengths of our cameras, we may find
that the images are still not perfectly aligned, i.e., the resulting stitched image looks blurry or
ghosted in some places.

 This can be caused by a variety of factors, including unmodeled radial distortion, 3D parallax
(failure to rotate the camera around its front nodal point), small scene motions such as waving
tree branches, and large-scale scene motions such as people moving in and out of pictures
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8.3 Global Alignment
8.3.2 Parallax Removal

* 3D parallax can be handled by doing a full 3D bundle adjustment, i.e., by replacing the

projection, which models camera translations.

* The 3D positions of the matched feature points and cameras can then be simultaneously
recovered, although this can be significantly more expensive than parallax-free image
registration.

*  Once the 3D structure has been recovered, the scene could (in theory) be projected to a single
(central) viewpoint that contains no parallax.
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8.3 Global Alignment
8.3.2 Parallax Removal

Figure 8.10  Deghosting a mosaic with motion parallax (Shum and Szeliski 2000) © 2000
IEEE: (a) composite with parallax; (b) after a single deghosting step (patch size 32); (c) after
multiple steps (sizes 32, 16 and 8).
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8.3 Global Alignment
8.3.3 Parallax Removal

 The final piece needed to perform fully automated image stitching is a technique to recognize
which images actually go together, which Brown and Lowe (2007) call recognizing
panoramas.

* To recognize panoramas, Brown and Lowe (2007) first find all pairwise image overlaps using a
feature-based method and then find connected components in the overlap graph to
“recognize” individual panoramas (Figure 8.11)
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8.3 Global Alignment
8.3.3 Parallax Removal
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8.3 Global Alignment
8.3.3 Parallax Removal

Figure 8.11  Recognizing panoramas (Brown, Szeliski, and Winder 2005), figures cour-
tesy of Matthew Brown: (a) input images with pairwise matches; (b) images grouped into
connected components (panoramas); (c) individual panoramas registered and blended into

stitched composites.
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8.3 Global Alignment
8.3.3 Parallax Removal

Figure 8.12  Marching errors (Brown, Szeliski, and Winder 2004): accidental matching of
several features can lead to maiches between pairs of images that do not actually overlap.
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8.3 Global Alignment
8.3.3 Parallax Removal

Figure 8.13  Validation of image matches by direct pixel error comparison can fail when
the scene contains moving objects (Uyttendaele, Eden, and Szeliski 2001) © 2001 IEEE.
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8.4 Compositing

* Once we have registered all of the input images with respect to each other, we need to decide
how to produce the final stitched mosaic image.

 This involves selecting a final compositing surface (flat, cylindrical, spherical, etc.) and view
(reference image).

+ It also involves selecting which pixels contribute to the final composite and how to optimally
blend these pixels to minimize visible seams, blur, and ghosting.
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8.4 Compositing

8.4.1 Choosing a compositing surface

 The first choice to be made is how to represent the final image.

* If only a few images are stitched together, a natural approach is to select one of the images as
the reference and to then warp all of the other images into its reference coordinate system.

* The resulting composite is sometimes called a flat panorama, since the projection onto the
final surface is still a perspective projection, and hence straight lines remain straight (which is
often a desirable attribute)

* For larger fields of view, however, we cannot maintain a flat representation without excessively
stretching pixels near the border of the image.
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8.4 Compositing

8.4.1 Choosing a compositing surface

 The first choice to be made is how to represent the final image.

* If only a few images are stitched together, a natural approach is to select one of the images as
the reference and to then warp all of the other images into its reference coordinate system.

* The resulting composite is sometimes called a flat panorama, since the projection onto the
final surface is still a perspective projection, and hence straight lines remain straight (which is
often a desirable attribute)
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8.4 Compositing

8.4.1 Choosing a compositing surface

* For larger fields of view, however, we cannot maintain a flat representation without excessively
stretching pixels near the border of the image.

* The usual choice for compositing larger panoramas is to use a cylindrical or spherical
projection.

* In fact, any surface used for environment mapping in computer graphics can be used, including
a cube map, which represents the full viewing sphere with the six square faces of a cube.
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8.4 Compositing

8.4.1 Choosing a compositing surface

* View selection
 (Coordinate transformations
* Sampling issues

DC&CV LAB
CSIE NTU 2021

Al



8.4 Compositing

8.4.1 Choosing a compositing surface
View selection
*  Once we have chosen the output parameterization, we still need to determine which part of the
scene will be centered in the final view. As mentioned above, for a flat composite, we can

choose one of the images as a reference.

* For example, for rotational panoramas represented as a collection of 3D rotation matrices, we
can choose the image whose z-axis is closest to the average z-axis (assuming a reasonable field

of view).
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8.4 Compositing

8.4.1 Choosing a compositing surface

Coordinate transformations

* After selecting the parameterization and reference view, we still need to compute the mappings
between the input and output pixels coordinates.

* If the final compositing surface is flat (e.g., a single plane or the face of a cube map) and the
input images have no radial distortion, the coordinate transformation is the simple homography

described by (8.38).

* If the final composite surface has some other analytic form (e.g., cylindrical or spherical), we
need to convert every pixel in the final panorama into a viewing ray (3D point) and then map it
back into each image according to the projection (and optionally radial distortion) equations.
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8.4 Compositing

8.4.1 Choosing a compositing surface
Sampling issues

*  While the above computations can yield the correct (fractional) pixel addresses in each input
image, we still need to pay attention to sampling issues.

* For example, if the final panorama has a lower resolution than the input images, pre-filtering
the input images is necessary to avoid aliasing

* The basic problem is to compute the appropriate pre-filter, which depends on the distance (and
arrangement) between neighboring samples in a source image.

* As discussed in Sections 3.5.2 and 3.6.1, various approximate solutions, such as MIP mapping
(Williams 1983) or elliptically weighted Gaussian averaging (Greene and Heckbert 1986) have

been developed in the graphics community
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8.4 Compositing
8.4.2 Pixel selection and weighting (de-ghosting)

*  Once the source pixels have been mapped onto the final composite surface, we must still decide
how to blend them in order to create an attractive-looking panorama.

« Ifall of the images are in perfect registration and identically exposed, this is an easy problem,
i.e., any pixel or combination will do.

* However, for real images, visible seams (due to exposure differences), blurring (due to mis-
registration), or ghosting (due to moving objects) can occur.

Gy B 2272 % DC&CV LAB
¢.|’_~.‘@ National Taiwan Universit C S I E N T U 2 0 2 1

y

75



8.4 Compositing
8.4.2 Pixel selection and weighting (de-ghosting)

Feathering and center-weighting

*  When an image has some cutout regions, down-weighting pixels near the edges of both cutouts
and the image is preferable.

 This can be done by computing a distance map or grassfire transform.
wy.(x) = argmin{||y|| | Tx(x + y) is invalid }, (8.71)
y

where each valid pixel is tagged with its Euclidean distance to the nearest invalid pixel (Sec-
tion 3.3.3). The Euclidean distance map can be efficiently computed using a two-pass raster
algorithm (Danielsson 1980; Borgefors 1986).
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8.4 Compositing
8.4.2 Pixel selection and weighting (de-ghosting)

Feathering and center-weighting

* The simplest way to create a final composite is to simply take an average value at each pixel,

C(x) = wyl / > (8.70)

k

where I, 1 (x) are the warped (re-sampled) images and wy(x) is 1 at valid pixels and O else-
where. On computer graphics hardware, this kind of summation can be performed in an
accumulation buffer (using the A channel as the weight).
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8.4 Compositing

8.4.2 Pixel selection and weighting (de-ghosting)
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8.4 Compositing
8.4.2 Pixel selection and weighting (de-ghosting)
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Figure 8.14  Final composites computed by a variety of algorithms (Szeliski 2006a): (a)
average, (b) median, (c) feathered average, (d) p-norm p = 10, (e) Voronoi, (f) weighted
R @ 3 ROD vertex cover with feathering, (g) graph cut seams with Poisson blending and (h) with 5CaCY LAR
@Y Nationat Tam pYFramid blending. CSIE NTU 2021 79
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8.4 Compositing
8.4.2 Pixel selection and weighting (de-ghosting)

Optimal seam selection

* Computing the Voronoi diagram is one way to select the seams between regions where
different images contribute to the final composite.

* However, Voronoi images totally ignore the local image structure underlying the seam.
* A better approach is to place the seams in regions where the images agree, so that transitions
from one source to another are not visible. In this way, the algorithm avoids “cutting through”

moving objects where a seam would look unnatural (Davis 1998).

* For a pair of images, this process can be formulated as a simple dynamic program starting from
one edge of the overlap region and ending at the other
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8.4 Compositing
8.4.3 Photomontage

*  While image stitching is normally used to composite partially overlapping photographs, it can
also be used to composite repeated shots of a scene taken with the aim of obtaining the best
possible composition and appearance of each element.
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8.4 Compositing
8.4.3 Photomontage

Figure 8.16  Photomontage (Agarwala, Dontcheva et al. 2004) © 2004 ACM. From a set
of five source images (of which four are shown on the left), Photomontage quickly creates
a composite family portrait in which everyone is smiling and looking at the camera (right).
Users simply flip through the stack and coarsely draw strokes using the designated source
image objective over the people they wish to add to the composite. The user-applied strokes
and computed regions (middle) are color-coded by the borders of the source images on the
left.
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8.4 Compositing
8.4.4 Blending

* Once the seams between images have been determined and unwanted objects removed, we still
need to blend the images to compensate for exposure differences and other misalignments.

* The spatially varying weighting (feathering) previously discussed can often be used to
accomplish this.
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8.4 Compositing
8.4.4 Blending

Laplacian pyramid blending

* Instead of using a single transition width, a frequency-adaptive width is used by creating a
band-pass (Laplacian) pyramid and making the transition widths within each level a function
of the level, i.e., the same width in pixels
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8.4 Compositing
8.4.4 Blending

Gradient domain blending

An alternative approach to multi-band image blending is to perform the operations in the
gradient domain.

* Perez, Gangnet, and Blake (2003) show how gradient domain reconstruction can be used to do
seamless object insertion in image editing applications
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8.4 Compositing
8.4.4 Blending

Gradient domain blending

Figure 8.18  Poisson image editing (Pérez, Gangnet, and Blake 2003) © 2003 ACM: (a)
The dog and the two children are chosen as source images to be pasted into the destination
swimming pool. (b) Simple pasting fails to match the colors at the boundaries, whereas (c)
Poisson image blending masks these differences.
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8.4 Compositing
8.4.4 Blending

EXpOSlll'C Compensation

* Pyramid and gradient domain blending can do a good job of compensating for moderate
amounts of exposure differences between images.

* However, when the exposure differences become large, alternative approaches may be necessary
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8.4 Compositing
8.4.4 Blending

EXpOSlll'C Compensation

* Uyttendaele, Eden, and Szeliski (2001) iteratively estimate a local correction between
* each source image and a blended composite.

* First, a block-based quadratic transfer function is fit between each source image and an initial
feathered composite.

* Next, transfer functions are averaged with their neighbors to get a smoother mapping and per-
pixel transfer functions are computed by splining (interpolating) between neighboring block
values.

*  Once each source image has been smoothly adjusted, a new feathered composite is computed
and the process is repeated (typically three times).
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